
Calculus 140, section 5.7 The Logarithm 
notes prepared by Tim Pilachowski 
 

In Algebra/Precalculus classes, you were handed (on a silver platter, as it were) items of information that had to 

wait until Calculus for a formal proof. 
 

We’re now faced with much the same situation with regard to the function y = ln x and its properties, which we 

have encountered several times in our exploration of Calculus so far. 
 

We begin the formal treatment with the rational function  
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  which is continuous on (0, ∞). 

 

Next we define a function   
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for all x > 0. Note, in particular, that   0
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By Theorem 5.12 (section 5.4) G is differentiable on (0, ∞), and 
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 . 

 

Since we also have ln(1) = 0 and  
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x
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d 1
ln  , by Theorem 4.6 (which implies uniqueness) we can define 
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See the text for development of the graph of y = ln x, including limits, and the connection to Euler’s number e. 
 

Example A: Given    21ln xxf   find the domain, intercepts, relative extreme 

values, inflection points, concavity and asymptotes, then draw the graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



One more important “silver platter” item that we can now prove. 
 

Fix a number b > 0. Then for x > 0, let    bxxg ln . Next,    
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  [Chain Rule]. 

Since     x
dx

d

x
xg

dx

d
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 , then by Theorem 4.6 (section 4.3) we can state that       Cxbxxg  lnln . 

For x = 1, we get            xbbxCbg lnlnln1lnln1   for all x. 
 

Theorem 5.21: “For all b > 0 and c > 0, ln bc = ln b + ln c.” 
 

This is the Law of Logarithms introduced in Algebra/Precalculus and re-introduced in the text in Chapter 1. 

Your text notes that the other properties of logarithms can be easily derived from the Law of Logarithms. 
 

The natural logarithm function, ln(x), can be used in a process called logarithmic differentiation to ease the 

differentiation of products and quotients involving multiple terms. Note that for any function     xfxg ln , 

by the chain rule  
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Example B: Given the polynomial       32
113  xxxxg , find the first derivative. 

 

Using logarithmic differentiation, 
 

 (a) Take the natural logarithm of both sides and use logarithm properties to expand: 

              1ln31ln23ln113lnln
32

 xxxxxxxg
 

 

(b) Take the derivative of ln [g(x)]:  
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 (c) Solve algebraically for  xg  :     xg
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 (d) Back-substitute for g(x):         32
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Example C: Use logarithmic differentiation to find the first derivative of  
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Now, we consider    xxg  ln , with domain (– ∞, 0). 

Using the Chain Rule,      
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 . Recall also that  x
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We conclude that the function xln , which equals  xln  on (– ∞, 0) and equals   xln  on (0, ∞), is an 

antiderivative of 
x

y
1

  on its entire domain, (– ∞, 0) union (0, ∞). 

 

As a result, when we integrate 
x

1
, we no longer need to limit ourselves to domains of positive values as we did 

in Lecture 5.5 Example H and Lecture 5.6 Example D. We can now state Cxdx
x

 ln
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 for all x ≠ 0. 

 

Examples D: Evaluate  dx
x
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 and  dx
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Example E: Evaluate   
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214 .   answer: Cx  21ln2  

 

 

 

 

 

 

 

 

Example F: Evaluate  
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Example G: Evaluate  dxxtan .   answer: CxCx  seclncosln  

 


